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Une logique quadrivalente du premier ordre
faiblement paraconsistante

Résumé

Dans ce cahier, on présente une logique quadrivalente du premier ordre, appelée
DDT, qui est une extension de la logique de Belnap et utilise une négation faible et
definit une sémantique adéquate pour le calcul des prédicats. Cette logique a une
structure algébrique stmple, celle du plus petit bi-treillis entrelacé non trivial. Cette
structure permet de définir tous les connecteurs logiques en imposant une proprieté
de monotonie qui préserve ’ordre du bi-treillis. Cette logique est faiblement para-
consigtent, Dans cetfe perspective la négation ne coincide pas avec le complément
et les raisons pour lesquelles une formule peut &tre considerée comme vraie ne sont
pas le complémentaire des raisons pour lesquelles elle peut étre considerée comme
fausse. De cette manidre on établit deux sources d’incertitude. Cette logique peut
donc étre considerée comme une logique de Vincertain. On présente une extension
de la théorie des ensembles approximatifs et on montre qu’il s’agit d’une semantique
pour le fragment bivalué de la'logique DD'T. On montre aussi comment utiliser cette
logique pour la modélisation des préférences, raison premiére pour laquelle elie fut
crée,

A first order, four-valued, weakly paraconsistent logic

Abstract

A first order four valued logic, named DDT, is presented in the paper as an
extension of Belnap’s logic using a weak negation and establishing an appropriate
semantic for the predicate calculus. The logic uses a simple algebraic structure, that
i8 the smallest non trivial interlaced bilattice on the four truth values. Such a struc-
ture enables to correctly define all the logical connectives (mainly the negations)
imposing a continuity property so that the order of the lattice is always preserved.
The logic is weakly paraconsistent. Under this perspective the negation does not
coincide with the complement and the reasons for which a sentence is considered to
be true are not complementary to the reasons for which is considered to be faise.
Such a property enables to distinguish two basic sources of uncertainty in reason-
ing, that is lack or excess of information. The logic is a language for reasoning
under uncertainty. An extension of rough sets theory is introduced in the paper as
it could be used as the semantics for the two valued fragment of the logic. The use
of the logic as language for preference modeling purposes is discussed in the paper
since the logic has been specially created for such reason.



Introduction

Contradictory information is a common situation in real life and in every day
human reasoning. Moreover humans normally are able to act either under
such “contradictory” situations or in “absence” of information. Under this
perspective is known that classic logic fails to be a good representation of
human reasoning since any incousistency allows the deduction of everything
and absence of information simply is not considered. Classic logic enables to
deduce automatically all the possible theorems from a given sef of sentences.
The introduction of new information (under the form of a new sentence) will
change nothing (if the sentence is consistent with the already given set) or
will destroy the conclusions (if it is inconsistent). The problem of reasoning
under inconsistency has been faced in paraconsistent logics (see da Costa,
1974; Rescher and Brandom, 1980). The problem of revision and updating
in a knowledge base has been faced in the non monotonic reasoning and
belief revision literature (see Ginsberg, 1987; Géardenfors, 1988). Very few
attempts appear in literature comparing the two approaches (see Besnard
and Laerens, 1994; Benferhat 1994).

The paper aims to present a first order extension of Belnap’s four valued
logic (see Belnap 1976 and 1977) with strong connectives and which is weakly
paraconsistent together with some applications. The paper is organized as
follows. In section 1 the basic idea of the four valued logic is presented
and its underlying algebraic properties are discussed. In section 2 the first
order extension of Belnap’s logic with strong connectives is defined. In
section 3 some relevant properties of the logic are presented. In section 4 an
extension of the rough sets theory is introduced as a semantic for the two
valued fragment of the logic. In section 5 a brief account of the application
of the logic in preference modeling is presented. The open problems are
discussed at the end of the paper.

1 Four truth values

The four values introduced by Belnap in his two seminal papers (Belnap
1976 and 1977) have a clear epistemic nature. Actually these truth values
represent different states where an agent (natural or artificial) may find
himself/herself when asked to answer a query. Giving a sentence ¢, the
agent may have been told that “¢ holds”, that “¢ does not hold”, both
or nothing. The problem is how the agent should react in any of these



cases, independently of the ontology of ¢ since (s}he is obliged to provide an
answer. The logic presented tries to model the epistemic nature of reasoning
without introducing epistemic operators as the modal ones of knowledge and
belief. The basic idea is to characterize some basic states in which an agent
may find himself/herself through a four valued valuation of his/her language.
The four values established are:

- true {t): there is evidence that is true and there is no evidence that is false;
- false (f): just evidence that is false and there is no evidence that is true;
- both (k): there is evidence both that is true and that is false;

- unknown (u): there is no evidence either that is true or that is false;

and we define the four corresponding epistemic states as the “true” one, the
“false” one, the “contradictory” one and the “unknown” one. The logic we
develop will therefore be a calculus over epistemic states and not on the
ontology of the language.

1.1 Lattices and Bilattices

Let me introduce first some basic definitions and notations (see Ginsberg
1988, Fitting, 1991) limited to complete lattices.

Definition 1.1 A complele lattice L is a triplet (T,U,N) where T is a par-
tiolly ordered set, U and N being the joint and the meet operators, respec-
tively.

Therefore we have:
A» CTXT: VYe,yeT:aUy =gl (z,y) 2Ny=luby(z,y)

Definition 1.2 A complete bilattice B is a five-tuple (T, L, 1, +, ) where
T is a twice particlly ordered set, U and N being the joint and the meet
operators of the first partial order, respectively, and + and e being the joint
and meet operators of the second partial order, respectively.

Therefore we have:
Ht]_,bg gTXT Vm,yGT

zUy=glby (z,y) zNy=luby (z,y)
z+y=glh.,(z,y) zey=luby,(zvy)

I restrict the field by considering a particular class of bilattices known
as “interlaced bilattices” (see Fitting, 1991).



Definition 1.3 An interlaced bilattice is o complete bilatiice such that meets
and joints of one order are monotone with respect to the other order of the
bilattice. That is:

Ve,y,2z,w €T, ¢ yand z =, w, thenz ez > yew

Vi,y,z,w€T, o >xyyand 2 >y w, then 2 Mz >, yMw

The concept of monotonicity is introduced as a basic condition for a bi-
lattice to be interlaced. Interlacity is the minimum property of a bilattice
in order not to be just two lattices stuck together. However the concept
of monotonicity will be also used in order to define basic transformations
of a lattice (and a bilattice). In Scott’s work (1972, 1982) on “approxima-
tion” lattices (mathematically equivalent to complete lattices) the concept
of “continuity” is introduced as a necessary property of a function in order
to be accepted as a transformation on the lattice. In the discrete case (as
in this case) continuity reduces to monotonicity. Such a property is im-
portant as monotonic transformations are the only ones that preserve the
order in a lattice. I will give therefore the definitions of the basic unary
transformations of an interlaced bilattice (keeping in mind monotonicity).

Definition 1.4 Given an interlaced bilattice B:
M T — T is a monotone transformation on =1 iff

Ya,y, 201y & Nl(m) .E1JV1(?J)
Ny : T+ T is a monotone transformation on >, iff
Vo,y, T ray & Mfz) =3 Ma(y)
T:T T is an inlerlaced monotone transformation on =; and >, iff
Ve,y, =0y © Z(z) =1 Z(y)

Vo,uy, 2 =1y © Z{z) =2 I(y)



1.2 Lattice representation of four truth values

A

t

Figure 1. The smallest non trivial interlaced bilattice A.

Using Scott’s results on approximation lattices (see Scott 1972 and 1982)
Belnap (1976 and 1977) ordered the four truth values on two lattices the
one named “information” lattice and the other “truth” lattice. Not surpris-
ingly these two lattices form the smallest non trivial interlaced bilattice (see
Ginsberg 1988 and Fitting, 1991). Such a bilattice is shown in figure 1 and
denoted as the bilattice A. Following the information order (the & one) we
read z > y as “y approximates the information at least as z”. The gib,
is the value u and the lub, is the value k. Following the truth order (the
¢ one) we read & = y as “y is true at least as z”. The glb, is the value f
and the lub; is the value ¢. In this context negations are monotone trans-
formations on a lattice with the duality property, that is H is a negation
if it is a monotone transformation on the bilattice (see definition 1.4) and,
Ve, & B H(H(z)) = z (duality property). Actually imposing the mono-
tonicity of negation is the only way to preserve the structure of the bilattice
and its interlaced property.

Belnap developed his propositional logic using as a negation a monotone
transformation on the % lattice and as basic binary conmnectives the con-
junction which corresponds to the meet on the ¢ lattice and the disjunction
which corresponds to the joint on the ¢ lattice. He then defined implication
as a two-valued binary connective such that “z—1” is true iff z >, y and
false otherwise.

Such a logic however lacks any specific semantics and is too weak in order



to use it as calculus (at least in the domain of preference modeling where I
was intended to use it). Following the pioneering work of Dubarle (1963) 1
therefore tried to develop a more strong logic which could allow a first order
calculus and strong connectives enough to represent both four valued and
two valued sentences.

The basic extensions done to the propositional logic introduced by Bel-
nap are the following.

1. Introduce a weak negation -4 which is an interlaced monotone trans-
formation of the A with duality. We therefore have the usual strong
negation — as defined by Belnap and a weak negation. The truth tables
of the two negations are shown in table 1 (on the use of two negations,
see also Fages and Ruet, 1994).

o~
o
=

g

"
o | flk|u

dalk|t|flu

S

Table 1. The truth tables of the two negations.

2. Define implication “—” as follows:
O.’—>ﬂ=def —V]L—!'?b(]{Vﬂ
The reasons for such a definition will become clearer in the next sec-
tion.

The resulting logic is a functionally complete propositional logic as has
already shown by Dubarle (1963) and it corresponds to a Boolean algebra
on the bilattice A. Ruet (1993) demonstrated also the soundness and com-
pleteness of a practically equivalent logic.

2 A first order four valued logic

2.1 Syntax

An alphabet of the first order language £, henceforth called DD'T, consists
of (for a preliminary version, see Doherty et al., 1992):
- a denumerable set of individual variables (possibly subscripted):

Ty, @Y1, Yo 21,29



“N”

- the logical connectives “v”* (or), “A” (and), “~” (implication), (com-
plementation}, ”#” (weak negation) and “-’ (strong negation),

- the unary operators “I” (true), “F” (false}, “U” (unknown), “K” (both),
“A (presence of truth),

- the quantifiers “Y (for all) and “3” (exists),

- the constants T, K, U, F,

- the symbols “(” and “)” serving as punctuation marks,

- a countable set of predicate constants (¢, p, ¢, r, ...) of positive arity, in-
cluding “=" for identity.

We use greek letters o, 3,7, - - - to represent general farmula of the language.

Well-formed formula are defined the usual way.
If o, B are wif, then -, o, Te, aAS, oV ete. are wil.

In the following we give the truth tables of the principal connectives. In
Table 2 are provided the truth tables of the negations and their combina-
tions. In table 3 the truth tables of the three basic binary operations, that is
the conjunction, the disjunction and the implication, are provided. In table
4 the truth tables of the strong unary operators are presented.

(e [#a [ ~fe [~ -o [ ~Fa | ~~da ]

t| k U T f k U t
k| t f u | k f t U
w | f t E | u t f k
fl u k t t % k f

Table 2. The truth tables of -, % and ~ and their combinations.

From an algebraic point of view these eight combinations represent one
of the Sylow subgroups of the group of all permutations of four elements and
precisely the one preserving complementarity between ¢ and f and between
k and u. Under such a property it is easy to observe that the “comple-
mentation” can be defined through the other two negations. The following
identities are true (the demonstrations are trivial from the truth table).

~NY = —|f]5—|7505 = 75—175—@

T = O



~eel = O

o = @

This is not a surprising result. Actually orly = and % are negations (ful-
filling monotonicity and duality) while ~ (which is not a monotone trans-
formation) should be viewed as an abbreviation of —gb=¢ which represents
on its turn the complement on the bilattice. If is easy to observe that the
negation corresponding to the monotone transformation on the £ lattice can
be defined as the sequence 44—+l Moreover the implication introduced cor-
responds to the conventional strong monotonic implication. In fact a—g
should be read as “either the complement of o or 87,

We introduce now the truth tables for the basic binary operators.

(Ao lf]e]k] [V [ul[flt]k]
uflu|f|lu]|f ulfluju|t|t
f{fif|f]|f flla|f|t|k
tlfu|f|tlk tHtE|t ]t ¢t
k(|f|fik|k Elt|kit|k

kjltlit|a|nu
u [t klt]k
f tl{t|t| ¢

Table 3. The truth tables of A, V and —.

A two valued fragment of the language, named DDT?, can be created
introducing some strong unary operators, Their truth tables are as {ollows:

1. T(ZE:def oA,
2. Fo=gopraia.

3. Uoz:de_f N%CMA‘V]LOJ.



4. I(Of:def 7['6)[/\/76—@!.
5. Ao=4,TaVEKa.
6. A_!O!:defFOAVI{OJ.

The truth tables for the defined operators are presented in table 4. Ac-
tually it is easy to verify that Aa = T'{aVie) and A-a = T(—aVib-a).

a|Ta| Ka|Ua| Fa| Ao | A-a
RN EYENEN f
k|l F et | F1 F1l¢ t
w | S St LSS /
Flf1l 1 f1elf t

Table 4. Truth Tables for the strong unary operators.

2.2 Semantics

The logic introduced deals with uncertainty. A set A may be defined, but
the membership of an object ¢ to the set may be not sure either because
the information is not suflicient or because the information is contradictory.

In order to distinguish these two principal sources of uncertainty the
knowledge about the “membership” of ain A and about the “non-membership”
of a in A are evaluated independently since they are not necessarily com-
plementary. Under this perspective from a given knowledge we have two
possible entailments, one, positive, about membership and one, negative,
about non-membership. Therefore any predicate is defined by two sets, its
positive and its negative extension in the universe of discourse. Since the
negative extension do not correspond necessarily to the complement of the
positive extension of the predicate we can expect that the two extensions
possibly overlap (due to the independent evaluation) and that there exist
parts of the universe of discourse that do not belong to any of the two
extensions. The four truth values capture these situations.

More formally we have:

A similarity type p is a finite set of predicate constants R, where each B
has an arity ng < w. Every alphabet uniquely determines a class of formulas.
Relative to a given similarity type p, B(21,...,2,) is an atomic formula iff



Z1,..., T, are individual variables, 12 € p, and ng = m. Similarly, (z = y) is
an atomic formula iff  and y are variables. The definitions of £L[p] formulas,
free variables, etc. are defined in the usual way. In this paper, formulas are
denoted by the letters o, 3, «, - - -, possibly subscripted.

A structure or model M for similarity type p consists of a non-empty
domain |M| and, for each predicate symbol R € p, an ordered pair RM =
(RM™ RM™) of sets (not necessarily a partition) of ng-tuples from [M]|.
Actually an individual can be both in the two sets or in no one of them,

A variable assignmentis a mapping from the set of variables to objects in
the domain of the model. Capital letters from the beginning of the alphabet
are used to range over variable assignments.

The truth definition for DDT is defined via two semantic relations, =,
(true entailment) and |=; (false entailment}, by simultaneous recursion as
in the following definition {due to the structure introduced the case of “not
true entailment” |, does not coincide with the false entailment and the case
of “not false entailment” |#; does not coincide with the true entailment).
Each formula is univoquely defined through its model which, however, is a
couple of sets, the “positive” and “negative” extensions of the formula.

Definition 2.1 Let M be a model structure and A a variable assignment.
1. M, R(zy,...,a)[A] iff (Alz1),..., Alz,)) € BMT.

ME; R(zy, ..., z.)[A] iff (A(z1),..., Az,)) € RM™.

M, R(zy, ..., 22)[A] iff (A(z1),..., Alz,)) € |M]\ RM",

Mit; R(zy, ... 20)[A] iff (A(21),..., Az,)) € |M|\ RM.

=

Mk, (z = y)[A] iff A(z) = Aly).
6. Ml; (z = y)[A] iff A(z) # Aly).

7. M=, ~ofA] iff Mi=; ofA].
8. M=, —o[A] iff Ml o[A].
9. M, —alA] iff M, ofA].

10. Mit; ~a[A] iff Mi#, o[A].



11.
12,
13.

14.

13.
16.
17.
18.

19.
20.
21.
22.

23,
2.
25,
26.

Mz ool A] iff Ml ofA].
My #olA] iff M, ofA].
Mi#: Aol A] iff M, ofA].

Mty FofA] iff ME; ofA].

M=, (aVB)[A] iff M=, ofA] or M=, B[A].
Miz; (aVB)[A] 4ff M=, ofA] and M= B[A].
M, (oVB)[A] iff M, ofA] and M, B[A].
My (aVB)[A] iff M, ofA] or M, B[A].

M=, (aAB)A] iff M=, ofA] and M=, S[A].
M=y (eAB)[A] iff M=y ofA] or M=, B[A].
Mt (anB)A] iff Mi#: ofA] or ME, B[A].

M (anB)[A] iff Mty ofA] and M B[A].

M, VealA] iff M=, o[A] for all A" differing with A ot most at .
M, YVealA] iff ME, a[A'] for all A' differing with A at most at z.
M=, YaalA] iff M=, of[A'] for an A’ differing with A af most at z.
MEE, YeofA] iff Mi£, [A'] for an A differing with A at most at z.

It is now possible to introduce an evaluation function v{w) mapping £
to the set of truth values {¢,k, u, f} as follows:
- v(a) =t if M=, ofA] and ME£; ofA]
- v{o) = k iff M=, ofA] and M, of4]
- v{a) = u iff MK, ofA] and MK, ofA)
- v(a) = f iff Mi#, o[A] and M, of 4]

Recalling that the truth values are ordered on the bilattice A it is easy
to verily that the evaluation function previously defined fulfills the following

10



properties:

- v(@AB) = min(v(e), v(5))

- v(avf) = max,(v(e), v(6))
- v(a—p) =t iff v(a) <, v(3)
-v(e=p) =t iff v(a) =v(F)

where the subscript ¢ indicates the “truth” dimension of the bilattice A.

From the above definitions, it is easy to see that when M|, ofA] the
formula o can be “true” or “contradictory” which in any case implies that
there is a presence of truth in a. Such a consequence relation introduces a
kind of “ambiguity” since it does not allow to assign a truth value univoquely
(actually we need the “false consequence relation”). We can therefore define
a “strong consequence” relation which may correspond to the case where the
formula ¢, in a variable assignment A, has exactly the truth value “true”.
This is typical of two valued valuations.

Definition 2.2 (Strong Consequence.) 4 formule « is true in a model
M iff M=, ofA] and M, ofA] for all varieble assignments A and we write
MEa[A]. A formula o is satisfiable iff e is true in a model M for some M.
A set of formulas I' is said to be a strong consequence or strongly entails «
formula o (written TEa) when for all models M and variable assignments
A, if MEB[A], for all 3; € T, then M=alA).

See Thomason and Horty (1988) and Fenstad et. al. (1987) for an

account of related logics and their applications.

3 Some properties of DDT

3.1 Axioms of DDT

The following formulas hold in the DDT logic.
1. o = (aVvK)=(ank).
2. Toho = K(aA-0).
3. faAdpsi(anp).

. oA Bt (anB).

. Fan - (ang).

ST

11



(a=B)=((a—=(B—+7))—(a—7)).
a—+((a—8)—8)).
anG—f.

© ® N>

af—o.

10. a—(8—(anB)).

11. a—pVa.

12. f—=pvao.

13. av~a.

14, —Va¢(z) = Ja—d(z).

15. =3z ¢(z) = Va¢(x).
16, AVzd(z) = Vaob-d(z).
17. A3zg(z) = Je—pl—e(z).

The following formulas do not hold in DDT.

1. ah—a—f.

2. f—=av-a.

3.2 Paraconsistency

DDT is a paraconsistent logic. From the previous section we see that the
“reduction ad absurdum” law does not hold in this logic and this is sufficient
to characterize it. However it is possible to make two observations.

1. The same law may be valid if we substitute the “strong negation” by
the “complementation”. The following therefore holds:
- aArea—f.
- faavea.

12



2. In the two valued fragment of the DDT logic, that is using formula
containing the strong unary operators T, K, U, F, /A the law is again
valid. The following therefore holds:

- TanNT—a—f.
- Tan-Ta—4.
- T(Oz/\—la)—-}ﬁ .
- B—=Tav-Te.

Since the logic contains not paraconsistent fragments I will call it a
“weakly paraconsistent logic”.

4 Rough sets semantics for DDT?

4.1 About rough sets

Rough sets have been introduced by Pawlak (1982) as a new approach con-
cerning the treatment of uncertain information and more specially the ca-
pability of distinguishing objects described in a more or less accurate way
(see also Pawlak, 1991).

Following Pawlak, given U/ # ) a set or universe of objects and P C
R (R being a family of equivalence relations), P # (@, then we define an
“indiscernability” relation IND(P) as

IND(P)= ﬂ P intersection of all the equivalence relations belonging toF
v

and U/IND(P) or U/P as the family of all the equivalence classes of the
equivalence relation IND(P) on U.

We denote the couple (U, R) as a knowledge base B. Let B= (U,R) a
knowledge base, then

IND(B)={IND(P): §+PCR}

is the family of all equivalence relations defined in B.
Given a B = (U, R) for each subset X C U we associate two sets:

Xp=|[{Y eU/R: YCX}

XE=|J{Y¥ €U/R: YNX 0}

13



the R-lower and R-upper approximation of X by the description I of U,
respectively. In other words, given a set of objects X difficult to be described,
it is possible to approximate it using the description U/R with two sets;

- the lower approximation which are the elements of I/ which surely are in
X (following the classification U/R);

- the upper approximation which are the elements of U/ which possibly are
in X (following the classification U/R);.

We finally define as B(X) = X#\ Xy the R-boundary region of X, that
is the set of elements on which there is a doubt about their belonging in
X. Some properties of the approximation sets are presented in the following
(see Pawlak, 1991), keeping in mind that X° denotes the complement of a
set X (and unless differently specified the complement will coincide with the
negation).

1. Xp G X ¢ XE,
BR=0r=0,Ur=U=U.
(XUY)E=XRUYZE
(XNY)p=XrNYzg

. X CY implies Xp C Yg.
X CY implies X® CYE,
(XUY)g 2 XpUVY5.
(XNYYCXENYE,
(X9r = (X7

. (X = (Xg)e

© ® N e o op W

—
=]

4.2 Semantics for DDT?

I will now try to extend the basic idea of the rough sets theory to the two
valued fragment of DDT. A basic implicit hypothesis in rough sets is that
the universe U 18 completely described by a set of equivalence relations R.
When a new set X has to be described there are no elements of U/ with
unknown properties {under the points of view represented by R) so that the
membership of an element to X can be doubtful only because of conflicting
information, but not because of lack of information.

14



I will relax therefore this hypothesis allowing that the relations in E do
not completely describe U, that is there are elements of U7 for which there
is no sufficient information for a given classification.

Example 4.1 Suppose that B = (U, R) is given with:
U= {a"la Loy L3y gy Tyy T, T, (L’g}
R= {{331} '732}1 {373, 'T'4}: {3?7, .’Bs}}
It can be observed that the definition of R leaves the elements s, zs unde-
fined. Suppose we want to describe, using R, the set X = {&1, 3,23, 25}.
Following the definitions from the rough setl theory we have:
Xg = {x1, 22}, the lower approzimation,
XE = {uy, 29, 3,24}, the upper approzimation.
Following the properties of the rough sets theory we can also conclude that:
=Xg = {xs, ¢, £7, 2s}, the lower approzimation of the negation,
- XB = {3, 24, 25, 25, 27, Tg}, the upper approzimation of the negation.
On the other hand if we celculate the upper and lower approzimations of the
set =X = {x4, ¢, T7, Tg} using the usual definitions, we obtain:
- Xp = {xr, s}, the lower approzimation of the negation,
~ X = {z3, 84, 3,28}, the upper approzimation of the negation,
which contradicls the previous resull. Aclually is the incomplete description
of U by R that generates the difference.

The relaxation of the completeness assumption, while leaves the defini-
tion of lower and upper approximations the same, modifies the theorems of
the theory. The following properties hold under the relaxed theory:

1. X C X € (~Xg)%, X* C (-Xg)".
2.0 =0p=0,Un=UF=U.

3. (XuY)R=XRyUYH

4. (XNY)p = XpNYg.

5 (XUY)r2 XrUYs.

6. (XNY)E=XENnYE

7. X8 = XB Xp = Xg.

The following properties do not hold however:
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1 XCXP
I (X)g = (XP)e.
I (X°)R = (Xz)°.

Where ~X is the negation of the set X, (X)° is the complement of the
set X and {z]is a category (an equivalence class of 1) including the element
z.

Proofs

1a By definition of Xg.

1b,1¢ Since U/R is not a complete description of U there may be elements of
X which are not in U/R. Therefore it is not the case that X C X%, If
@ € X then either 3[z] : [2]NX # @ (thereforez € XF) orz € U\U/R.

In the first case € X® and [z] N =X = @ therefore it is not the case
[#] € =X and therefore z € (—Xg)¢ (and this demonstrates also 1c).

In the second case if # € U \ U/R then by definition z : z ¢ = Xp,
therefore z € (-Xg)° (and this completes the demanstration of 1b).

2 See Pawlak (1991).

3ze (XUYYWIF[zIN(XUY) #£0iff
(INX)U([z]NY) £ 0 Hf ((2]NnX) # 0 or ([z]NY) # 0 iff
ze€XPorzeYiffz ¢ (XRBUYH),

4ze(XNY)piff 2] C(XNY) HF
[z] C X and [z] CY iff 2 € Xpand z € Y iff v € (Xp N Yg).

5 [z] C X orz CY. Then [¢] C X UY and therefore z € (X UY)5.
6 ze(XNY)YFifffz]n(XNY)#0if

INX#@Gand [z]NY £0iff s € X¥ and z € YE
|

Given a structure M of similarity type p, let S(z;,-++z,,) be an atomic
formula, such that z;-- -z, are individual variables, S € p with arity m.
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Let also B = (U, R) be a knowledge base in M such that U/ € M and R
is a set of equivalence relations on U such that |J,{U/R;} C U. Let also
the DDT? be the language adopted (in this case strong entailment coincides
with regular entailment).

Definition 4.1
BEIzASE) ¢f 3YE€U/R,z€Y : YNS#0
BESzA-S(z) if 3 YeU/R zeY : YNS5#0
BEJz-AS(x) if SYeU/R,zeY : YNS=0orcecU\U/R
where S and =S are the extensions of the formule S(z) and —S(z), respec-
tively.
It is easy to demonstrate the following corollaries.

Corollary 4.1
BEIeTS(z) ¢f 3 YeU/R,zeY:YCS

Proof

BE3IzTS(x) iff B3Iz AS{z)A-A-S(z)

Therefore Y € U/R, 2 €Y : YNS#Band (Y eU/R: YN-S=0or
z € U\ U/R). There are two possibilities:

1.V €U/R, z€Y : YNS#Band Y € U/R: Y N=-S=4§

which implies Y C 8

20 eU/R,z€Y : YNS#DPand 2 € U\U/R)

But the second possibility is always false. Therefore ¥ C §.

Corollary 4.2
BEIzKS(x) ff IY€U/R, 2€Y : YNSZ#Band Y NS £
Proof

BE3Iz KS(2) iff B3z AS(2)AA-S(z)
Therefore just apply the definition.
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Corollary 4.3
BEIzUS(z) iff UNU/RNS#D

Proof

BEIzUS(z)Ht B E Iz ~AS(zx)A-A~S(z)

Therefore Y ¢ U/R, z €Y : (YNS=0orzc U\U/R)and (Y NS5 =
lor z € U\ U/R)

The only possible combination is that 2 € U \ U/R.

Therefore T \U/RN S # .

Corollary 4.4
B3z FS(z) ¢ff 3Y eU/R, zeY: Y CS

Proof

BE3Jz FS(z)iff BE Iz AS(z)A-A-S(2)

It is now sufficient to apply the same demonstration as for T'S(2) inverting
S and =S.

Therefore Y C = 5.

The following proposition foltlows.

Proposition 4.1 Given a formula S(z), a knowledge base B = (U, R), S?,
S*%, 8%, 81 denoting the estensions of T'S(z), KS(z), US(z), FS(z), re-
spectively. Then:

- 8§t = Sp = SE N (-8F)

-8k =8RN-§28

S L g (SR)C M (_|SR)c

-8 =85 =-8%n (SR)C

Proof
Immediate using the corrolaries previously demonstrated.
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Hence the “true” extension of the predicate S(z) under the knowledge
base B = (U, R) is its lower approximation using the description R and the
“false” extension is the lower approximation of the negation of S(z). The
“contradictory” extension is the intersection among the upper approxima-
tions of the predicate and its negation and the “unknown” extension is the
intersection of the complements of the two upper approximations (which
coincides with the part of U/ which cannot be described by £).

Example 4.2 Using the data of the previous ezample, it is easy to verify
that:

Xt = XR = {:cl,a:z}

Xt=XEn~-XE= {:B3, 24}

X% = (XR)C e (_|XR)<: — {335; 336}

Xf=-Xp= {27, 28}

We have therefore a one to one correspondence among the concepts in-
troduced in the extended rough set theory (accepting the incompleteness
axiom) and the concepts introduced by the DDT? language. Under this
perspective the recent applications of rough sets in decision analysis (see
Pawlak and Stowiniski, 1994; Greco et al., 1995) can profit of the preference
modeling theory based on the DDT language and vice versa (see Tsoukids
and Vincke, 1995a,b).

5 Preference modeling applications

Preference modeling problems have been the original stimulus for the devel-
opment of the DDT logic. Preference modeling is normally used in decision
aid situations where uncertainty and/or ambiguity are very common. More-
over when the decision problem has different dimensions, a preference aggre-
gation problem arises and then the problem of uncertainty is even stronger.
Finally decision aid calls for more or less immediate action. In other words
decision makers have to make a decision (whatever that means) into a pre-
cise time horizon, provided a specific amount of resources and information
- knowledge. Therefore no one cares what may be the definitely optimal
choices, while a locally satisfactory solution is searched (see Simon, 1979).
On the other hand, from a decision point of view, the distinction between
uncertainty due to lack of information from uncertainty due to contradictory
information is of a capital importance since it generates different operational
attitudes. In the first case uncertainty may be reduced (if possible) gathering
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for more information (or for the relevant one), while in the second case some
conflicts, inconsistencies or contradictions have to be solved. When decision
makers are not sure it is always useful to know why.

The DDT language capture in a very clear and intuitive way this kind
of reasoning. It has been therefore used as the basic formalism under which
a non conventional theory about preference modeling could be developed
(see also Kacprzyk and Roubens, 1988). In Tsoukids and Vincke (19952) a
new preference structure, named PC, is introduced and axiomatized, while
in Tsoukias and Vincke (1995b) a semantical investigation, from a decision
point of view, of the PC preference structure is conducted.,

The basic ideas of this new theory are the following.

Conventional preference models use the well known (P, I, R} preference
structure where (see also Roubens and Vincke, 1985):

- P is strict preference;
- I is indifference;
- R is incomparability

Between such crisp and sure situations some hesitation may occur due
to two basic reasons: lack of relevant information when an element z is
compared to an element y or vice versa and/or contradictory information
when an element z is compared to an element y or vice versa. Therefore
between each couple of relations two more relations can be introduced (one
for each reason of uncertainty) and precisely:

- between P and I, the relations K and H;

- between P and R, the relations V and @;

- between R and 7, the relations U and J;

plus the relation L between R and I (while R, [, U and J are symmetric
relations, L is not symmetric since it corresponds to lack of information
when z is compared to y and contradictory information when y is compared
to z; therefore it is completely uncertain, but for not symmetric reasons).

These ten relations constitute the PC preference structure which can be
defined using a characteristic relation S (a reflexive large preference relation
of the type “at least as good as”} and the DDT language (or the DDT?
one). In Tsoukids and Vincke (1995a) is demonstrated that such a prefer-
ence structure is a mazimal well-founded fundamental relational system of
preferences under the following three axioms.

Al any preference structure on a set A should be a f.r.s.p. (fundamental

relational system of preferences), that is should define a partition on
A x A for any given A; in other words the preference relations in-
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cluded in the preference structure should be exhaustive for all possible
situations and not redundant;

A2 the preference structure should follow the axiom of “independence
from irrelevant alternatives”; in a more general version the evaluation,
if a specific ordered couple belongs (and in which way) to a specific
relation, should depend on information concerning only this ordered
couple:

A3 the preference structure should be “well-founded” in the sense that any
binary relation in it should be univoquely defined by its properties.

As a consequence some theoretical and operational problems in the field
of multicriteria decision aid can find elegant and definite solutions (see Roy
and Vincke, 1984; Papadopoulos, 1995; Tsoukids and Vincke, 1996).

6 Conclusions

A first order, four valued logic is presented in the paper as an extension
of Belnap’s logic. The logic is equipped with a weak negation (preserving
interfaced monotonicity on the bilattice of truth values) and a strong mono-
tonic implication. A two valued fragment, named DIDT?, is presented in the
paper enabling to defline strong two-valued sentences. A semantic is intro-
duced based on the idea that the evaluation of the negative extension of a
predicate is independent from the evaluation of the positive extension, that
is the complement of a predicate does not coincide with the exfension of
its negation and that the universe of discourse may contain elements which
do not belong to any of the two extensions. The resulting four possibilities
correspond to the four truth values of the logic and define four possible ex-
tengions of any predicate. A double entailment relation is used in order to
define such concepts and a strong entailment is introduced so as to have a
correspondence with the evaluation function of the logic.

Moreover a rough sets semantic is introduced for the DDT? language
(the two valued fragment of DDT). In such semantics an incompleteness
axiom is introduced in the rough sets theory in the sense that the universe
of discourse U of a knowledge base B = (U, R) is not always completely
described by the relations R, therefore leaving space for unknown elements
besides the contradictory ones. Under such extension of the rough sets
theory a one to one correspondence of the two valued sentences of the DDT
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language and the concepts of upper and lower approximation is possible.
Finally the application of the DDT language in preference modeling and
decision aid is outlined in the paper. The interested readers can refer to the
quoted literature.

An open question remains the possibility to use the logic in order to
perform non monotonic reasoning. The strong implication introduced in
the paper is pure monotonic. Other weaker implications can be defined
however, enabling eventually different levels of non-monotonicity using the
paraconsistent property of the logic. This defines the main regearch direction
in the future.
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